Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Well Trained Algorithm: An exploration of the use of AI as a tool for musical expression
Kungl. Musikhögskolan, Institutionen för komposition, dirigering och musikteori.
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete) [Forskning på konstnärlig grund]
Abstract [en]

The Well Trained Algorithm is a composition that challenges prevailing conceptions of the use of AI tools in music through the reconceptualising of JukeBox, a generative AI model for music, as an instrument in its own right. Here, I am coining the term ‘instrumentisation’ to describe a methodology for applying the qualities and associations of a musical instrument to a traditionally non-musical object. To showcase this conceptual approach, this model of thinking is applied to aid in the composition of the AI-generated musical piece, The Well Trained Algorithm. Through this process of ‘instrumentisation’, musical terms such as tuning and timbre are redefined to better relate to the specific affordances of an artificially intelligent system. The composition is informed, then, by an exploration of a system's instrumental possibilities, leading to a more effective and artistic use of the technology in the creative process. The seminal works of J. S. Bach and La Monte Young, The Well Tempered Clavier and The Well Tuned Piano, respectively, provide a historical, musical, and theoretical context for the piece as well as the datasets used to fine-tune the JukeBox model. With this thesis, I ask if, through a process of ‘instrumentisation’ AI technology can be successfully reconceptualised as a musical instrument as a means to promote artistic expression.

Ort, förlag, år, upplaga, sidor
2023.
Nyckelord [en]
Artificial Intelligence, AI, Machine Learning, ML, Generative Music, J. S. Bach, LaMonte Young, The Well Tempered Clavier, The Well Tuned Piano, Tuning System, Instrumentisation
Nationell ämneskategori
Musik
Identifikatorer
URN: urn:nbn:se:kmh:diva-4998OAI: oai:DiVA.org:kmh-4998DiVA, id: diva2:1768052
Presentation
2023-05-03, 1E207, Valhallavägen 105, 115 51 Stockholm, Stockholm, 09:00 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2023-06-15 Skapad: 2023-06-14 Senast uppdaterad: 2023-06-15Bibliografiskt granskad

Open Access i DiVA

fulltext(750 kB)144 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 750 kBChecksumma SHA-512
6ac10a1ae446e0b9012070dc521280bc806ff228380b4e56eca6eff75a544c6e251cc69d567aa2cef939293fff48eeb3aef26f013e2b166c2b1618786a593b24
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för komposition, dirigering och musikteori
Musik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 144 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 400 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf