Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low Resource Audio-To-Lyrics Alignment from Polyphonic Music Recordings
Royal College of Music in Stockholm, Department of Folk Music. Kungliga Musikhögskolan, Stockholm.ORCID iD: 0000-0002-4756-1441
Number of Authors: 32021 (English)In: ICASSP 2021 -21021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE conference proceedings, 2021Conference paper, Oral presentation with published abstract (Refereed)
Place, publisher, year, edition, pages
IEEE conference proceedings, 2021.
Keywords [en]
automatic lyrics transcription, music information retrieval, computational linguistics, automatic speech recognition
National Category
Other Computer and Information Science
Identifiers
URN: urn:nbn:se:kmh:diva-4320OAI: oai:DiVA.org:kmh-4320DiVA, id: diva2:1622914
Conference
ICASSP 2021 -21021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Available from: 2021-12-26 Created: 2021-12-26 Last updated: 2022-01-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Ahlbäck, Sven
By organisation
Department of Folk Music
Other Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 345 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf